Polytec TC 430

Properties

Polytec TC 430 is a two component, thermally conductive, electrically insulating epoxy.

It is suggested for applications where heat dissipation and insulating properties are required. Typical applications:

- Attaching heat sinks
- Die attach
- Die bonding power devices
- Thermally conductive underfill

Polytec TC 430 has an excellent adhesion to ceramic, glass, semiconductor materials, ferrous and non-ferrous metals and most plastics.

The material can be applied via dispensing, screen printing, or manual application.

Processing

- For two-component products the components A and B should be mixed carefully within the specified mixing ratio.
- For filled products both components should be homogenized carefully prior mixing, in order to prevent a possible settling of the filler.
- Processing should be carried out rapidly after mixing the components; as an indication the pot life can be used.
- Surfaces should be clean, thus free of dirt, grease, oil, dust or process chemicals.
- One-component products can be applied directly and are not subject to a pot life (except pre-mixed/frozen products).
- Please take notice of respective minimum curing temperature and time.
- Part B tends to crystallization under cold environmental conditions. This is a normal behavior. If Part B is crystallized or shows some kind of cloudiness, heating of Part B overnight up to 40°C will be necessary. This has no influence on the quality of this component.
- For Safety information please refer to the respective Material Safety Data Sheet.

Polytec TC 430
Thermally Conductive Adhesive
Technical Data

Polytec TC 430

Properties in uncured state	Method	Unit	Technical Data
Chemical basis	-	-	Ероху
No. of components	F	-	2
Mixing ratio (weight)	F	-	100:4
Mixing ratio (volume)	-	-	-
Pot life at 23°C	TM 702	Days	2
Storage Stability at 23°C	TM 701	Months	12
Consistency	TM 101	-	Thixotropic Paste
Density Mix	TM 201.2	g/cm³	1,35
Density A-Part	TM 201.2	g/cm³	1,38
Density B-Part	TM 201.2	g/cm³	1,05
Type of filler	F	-	Boron nitride
Max. particle size	-	μm	<20
Viscosity Mix 84 s ⁻¹ at 23°C	TM 202.1	mPa∙s	13 000
Viscosity A-Part 84 s ⁻¹ at 23°C	TM 202.1	mPa∙s	-
Viscosity B-Part 84 s ⁻¹ at 23°C	TM 202.1	mPa∙s	-

Properties in cured* state	Method	Unit	Technical Data
Color (before / after curing)	TM 101	-	Yellowish
Hardness (Shore D)	DIN EN ISO 868	-	85
Temperature resistance continuous	TM 302	°C	-55 / +250
Temperature resistance short term	TM 302	°C	-55 / +350
Degradation Temperature	TM 302	°C	+400
Glass Transition Temperature (T_g)	TM 501	°C	+98
Coefficient of thermal expansion (<tg)< td=""><td>ISO 11359-2</td><td>ppm</td><td>26</td></tg)<>	ISO 11359-2	ppm	26
Coefficient of thermal expansion (>Tg)	ISO 11359-2	ppm	135
Thermal conductivity	TM 502	W/m⋅K	0,7 ±0,1
Specific volume resistivity	DIN EN ISO 3915	Ω·cm	>1·10¹³
Young modulus	TM 605	N/mm²	5 600
Tensile strength	TM 605	N/mm²	44
Lap shear strength (AI/AI)	TM 604	N/mm²	11
Elongation at break	TM 605	%	0.9
Water absorption 24 h, 23°C	TM 301	%	0.22

^{*}The above data has been determined with samples cured at 150 °C. Please notice, by varying the curing temperature these properties can be influenced to some extend.

Polytec TC 430

Curing*	Method	Unit	Technical Data
Minimum curing temperature		°C	80
Curing time at 23°C		h	-
Curing time at 100°C		min	60
Curing time at 120°C		min	-
Curing time at 150°C		min	15
Curing time at 180°C		S	-

^{*}Curing temperatures refer to the temperature in the respective bond line. When choosing the respective curing conditions, the time needed to heat the substrate has to be considered. Depending on the type of heat source (convection oven, hot stamp, heating plate) the heat input may vary.

Standard pack sizes:

30 g, 250 g, 500 g 1 kg, 25 kg

Customized Packaging
Also available as pre-mixed frozen product

Please note:

The information listed above is typical data based on tests and is believed to be accurate. Polytec PT makes no warranties (expressed or implied) as to their accuracy. The data listed above does not constitute specifications. The processing (particularly the curing conditions) of the material, the process control, and the variety of different applications at various customers are not under Polytec PT's control. Therefore, Polytec PT will not be liable for concrete results in any specific application or in any connection with the use of this product. The curing conditions have a major effect on the properties of the cured material. Therefore, it is highly recommended to keep the curing schedule – once established - under tight control. With the release of this data sheet all former data sheets will be null and void.

Polytec PT GmbH

Subject to alteration.

Polytec PT GmbH
Polymere Technologien
plant Maxdorf

Polymere Technologien

info-pt@bostik.com

www.polytec-pt.de

Bahnhofstraße 1 67133 Maxdorf Germany

Ettlinger Straße 30 76307 Karlsbad Germany Phone +49 (0)7202 706-3500

> info-pt@bostik.com www.polytec-pt.de